LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amplification-Free SARS-CoV-2 Detection Using Nanoyeast-scFv and Ultrasensitive Plasmonic Nanobox-Integrated Nanomixing Microassay

Photo from wikipedia

The implementation of accurate and sensitive molecular detection for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is paramount to effectively control the ongoing coronavirus disease 2019 (COVID-19) pandemic. In… Click to show full abstract

The implementation of accurate and sensitive molecular detection for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is paramount to effectively control the ongoing coronavirus disease 2019 (COVID-19) pandemic. In this regard, we herein propose the specific and highly sensitive SARS-CoV-2 detection based on nanoyeast single-chain-variable fragment (scFv) and ultrasensitive plasmonic nanobox-integrated nanomixing microassay. Importantly, this designed platform showcases the utility of nanoyeast-scFvs as specific capture reagents targeting the receptor-binding domain (RBD) of the virus and as monoclonal antibody alternatives suitable for cost-effective mass production and frequent testing. By capitalizing on single-particle active nanoboxes as plasmonic nanostructures for surface-enhanced Raman scattering (SERS), the microassay utilizes highly sensitive Raman signals to indicate virus infection. The developed microassay further integrated nanomixing for accelerating molecular collisions. Through the synergistic working of nanoyeast-scFv, plasmonic nanoboxes, and nanomixing, the highly specific and sensitive SARS-CoV-2 detection is achieved as low as 17 virus/μL without any molecular amplification. We successfully demonstrate SARS-CoV-2 detection in saliva samples of simulated patients at clinically relevant viral loads, suggesting the possibility of this platform for accurate and noninvasive patient screening.

Keywords: ultrasensitive plasmonic; scfv ultrasensitive; detection; integrated nanomixing; cov detection; sars cov

Journal Title: Analytical Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.