LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photoelectrochemical Biosensor for MicroRNA-21 Based on High Photocurrent of TiO2/Two-Dimensional Coordination Polymer CuClx(MBA)y Photoelectrode.

Photo from wikipedia

Conventional photosensitive materials such as TiO2 suffer from restricted absorption in the ultraviolet region, fast recombination of photogenerated electron-hole pairs, and a lack of functional groups for biocoupling, which hinder… Click to show full abstract

Conventional photosensitive materials such as TiO2 suffer from restricted absorption in the ultraviolet region, fast recombination of photogenerated electron-hole pairs, and a lack of functional groups for biocoupling, which hinder their application in photoelectrochemical (PEC) biosensing. Herein, a new coordination polymer (CP) based on Cu(I), chloridion, and 4-mercaptobenzoic acid (MBA) has been designed and synthesized (called CuClx(MBA)y). The prepared p-type CuClx(MBA)y exhibits visible-light absorption due to its narrow optical band gap (2.59 eV), and its proper band edge position enables it to form a p-n junction with TiO2. Through layer-by-layer assembling, the photocurrent intensity of the CuClx(MBA)y/TiO2/FTO composite photoelectrode was 3.7-fold higher than that of a TiO2/FTO electrode and 35-fold higher than a CuClx(MBA)y/FTO electrode. The potential enhancement mechanism was discussed, which lies in the contributions of CuClx(MBA)y in enhancing absorption in the visible-light region and boosting the separation of electron-hole pairs of TiO2 by the p-n junction. Furthermore, CuClx(MBA)y nanosheets can realize bioconjugation directly, thanks to its abundant carboxyl groups. The CuClx(MBA)y/TiO2/FTO composite photoelectrodes were applied to develop a sensitive PEC biosensor for microRNA-21 (model target). By subtly exploiting the energy transfer between CuClx(MBA)y and Au nanoparticles (AuNPs), AuNPs served as effective quenchers. In the presence of the target, AuNP-labeled sDNA1 connected to the electrode surface, and thus, a decreased photocurrent was obtained. The proposed biosensor has a low detection limit of 0.29 fM (S/N = 3), good selectivity, and reproducibility. The proposed system was applied to monitor microRNA in cancer cells with satisfying results.

Keywords: tio2; biosensor; coordination polymer; mba; cuclx mba

Journal Title: Analytical chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.