LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile Functionalization Strategy for Ultrasensitive Organic Protein Biochips in Multi-Biomarker Determination.

Photo from wikipedia

In recent years, organic field-effect transistors (OFETs) have shown great potential for advanced protein biochips due to their inherent biocompatibility and high-throughput detectability. However, the development of OFET-based protein biochips… Click to show full abstract

In recent years, organic field-effect transistors (OFETs) have shown great potential for advanced protein biochips due to their inherent biocompatibility and high-throughput detectability. However, the development of OFET-based protein biochips is still at an early stage. On the one hand, single-biomarker determination is not sufficient for the diagnosis of cancer; thus, simultaneous monitoring of electrical signals toward multi-biomarkers is widely concerned and explored. On the other hand, an optimized functionalization strategy for efficient protein immobilization is another key to make OFET-based protein biochips accessible with improved detection performance. Herein, a facile functionalization strategy is developed for excellent charge-transport thin films by suppressing the gelation of diketopyrrolopyrrole (DPP)-based polymer semiconductors with the addition of the glutaraldehyde cross-linking agent. Besides, functional groups are introduced on the device surface for efficient attachment of antibodies as receptors via a condensation reaction, enabling simultaneous determination of α-fetoprotein biomarker and carcinoembryonic antigen biomarker with improved sensitivity and reliability. Therefore, the proposed high-throughput OFET-based protein biochip has the potential to be widely utilized in early liver cancer diagnosis.

Keywords: functionalization strategy; biomarker; protein biochips; determination

Journal Title: Analytical chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.