LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deployment of MIL-88B(Fe)/TiO2 Nanotube-Supported Ti Wires as Reusable Electrochemiluminescence Microelectrodes for Noninvasive Sensing of H2O2 from Single Cancer Cells.

Photo by minhtriet26 from unsplash

As one of the significant intracellular signaling molecules, hydrogen peroxide (H2O2) regulates some vital biological processes. However, it remains a challenge to develop noninvasive electrodes that can be used for… Click to show full abstract

As one of the significant intracellular signaling molecules, hydrogen peroxide (H2O2) regulates some vital biological processes. However, it remains a challenge to develop noninvasive electrodes that can be used for sensing trace H2O2 at the cellular level. Here, we evaluated a high-performance solid-state electrochemiluminescence (ECL) H2O2 sensor based on MIL-88B(Fe) nanocrystal-anchored Ti microwires. Semiconducting TiO2 nanotubes (TiNTs) vertically grown around a Ti wire via an anodization technique act as an intrinsic ECL luminophore. By integrating with MIL-88B(Fe), the synergistic effect of the TiO2 luminophore and the remarkable peroxidase-like activity of MIL-88B(Fe) enable the resulting H2O2 sensor an ultrahigh sensitivity featuring a minimum detection limit of 0.1 nM (S/N = 3), long-term stability, high durativity, and wide-range linear response to a concentration of up to 10 mM. To demonstrate the concept of a MIL-88B(Fe)@TiO2 microelectrode for single-cell sensing, the electrode was used to detect intracellular H2O2 in a single cell. Moreover, benefiting from the heterojunction of MIL-88B(Fe)/TiO2, the microelectrode was found to exhibit excellent photocatalytic activity in the visible-light range, that is, the sensor surface can be self-cleaning after a short visible-light treatment. These advanced sensor characteristics involving easy reusability reveal that the MIL-88B(Fe)@TiO2 microelectrode is a new platform for cytosensing. This study provides a new strategy to design semiconductor materials with arbitrary shape and size, allowing for profound applications in biomedical and clinical analysis.

Keywords: electrochemiluminescence; mil 88b; 88b tio2; h2o2 single

Journal Title: Analytical chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.