LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Artificial Intelligence-Aided Multiple Tumor Detection Method Based on Immunohistochemistry-Enhanced Dark-Field Imaging.

Photo from wikipedia

The immunohistochemical method serves as one of the most practical tools in clinical cancer detection and thus has great application value to overcome the existing limits of the conventional method… Click to show full abstract

The immunohistochemical method serves as one of the most practical tools in clinical cancer detection and thus has great application value to overcome the existing limits of the conventional method and further improve the detecting efficiency and sensitivity. This study employed 3,3'-diaminobenzidine (DAB), a conventional color indicator for immunohistochemistry, as a novel high-sensitive scattering reagent to provide a multidimensional image signal varying with the overexpression rate of tumor markers. Based on the scattering properties of DAB aggregates, an efficient and robust artificial intelligence-aided immunohistochemical method based on dark-field imaging has been established, with improvement in both the imaging quality and interpretation efficiency in comparison with the conventional manual-operated immunohistochemical method. Referencing the diagnosis from three independent pathologists, this method succeeded in detecting HER2 overexpressed breast tumors with a sensitivity of 95.2% and a specificity of 100.0%; meanwhile, it was found to be applicable for non-small-cell lung tumors and malignant lymphoma as well. As demonstrated, this study provided an effective and reliable means for making diagnostic suggestions, which exhibited great potential in multiple tumor pathological detection at low cost.

Keywords: tumor; method; detection; artificial intelligence; method based; intelligence aided

Journal Title: Analytical chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.