LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Data-Driven Soft Independent Modeling of Class Analogy in Paper Spray Ionization Mass Spectrometry-Based Metabolomics for Rapid Detection of Prostate Cancer.

Photo from wikipedia

Sensitive, rapid, and meaningful diagnostic tools for prostate cancer (PC) screening are urgently needed. Paper spray ionization mass spectrometry (PSI-MS) is an emerging rapid technology for detecting biomarker and disease… Click to show full abstract

Sensitive, rapid, and meaningful diagnostic tools for prostate cancer (PC) screening are urgently needed. Paper spray ionization mass spectrometry (PSI-MS) is an emerging rapid technology for detecting biomarker and disease diagnoses. Due to lack of chromatography and difficulties in employing tandem MS, PSI-MS-based untargeted metabolomics often suffers from increased ion suppression and subsequent feature detection, affecting chemometric methods for disease classification. This study first evaluated the data-driven soft independent modeling of class analogy (DD-SIMCA) model to analyze PSI-MS-based global metabolomics of a urine data matrix to classify PC. The efficiency of DD-SIMCA was analyzed based on the sensitivity and specificity parameters that showed 100% correct classification of the training set, based on only PC and test set samples, based on normal and PC. This analytical methodology is easy to interpret and efficient and does not require any prior information from the healthy individual. This new application of DD-SIMCA in PSI-MS-based metabolomics for PC disease classification could also be extended to other diseases and opens a rapid strategy to discriminate against health problems.

Keywords: spray ionization; prostate cancer; mass spectrometry; paper spray; ionization mass; data driven

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.