LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Artificial Intelligence-Controlled Microfluidic Device for Fluid Automation and Bubble Removal of Immunoassay Operated by a Smartphone.

Photo from wikipedia

There have been tremendous innovations in microfluidic clinical diagnostics to facilitate novel point-of-care testing (POCT) over the past decades. However, the automatic operation of microfluidic devices that minimize user intervention… Click to show full abstract

There have been tremendous innovations in microfluidic clinical diagnostics to facilitate novel point-of-care testing (POCT) over the past decades. However, the automatic operation of microfluidic devices that minimize user intervention still lacks reliability and repeatability because microfluidic errors such as bubbles and incomplete filling pose a major bottleneck in commercializing the microfluidic devices for clinical testing. In this work, for the first time, various states of microfluid were recognized to control immunodiagnostics by artificial intelligence (AI) technology. The developed AI-controlled microfluidic platform was operated via an Android smartphone, along with a low-cost polymer device to effectuate enzyme-linked immunosorbent assay (ELISA). To overcome the limited machine-learning capability of smartphones, the region-of-interest (ROI) cascading and conditional activation algorithms were utilized herein. The developed microfluidic chip was incorporated with a bubble trap to remove any bubbles detected by AI, which helps in preventing false signals during immunoassay, as well as controlling the reagents' movement with an on-chip micropump and valve. Subsequently, the developed immunosensing platform was tested for conducting real ELISA using a single microplate from the 96-well to detect the Human Cardiac Troponin I (cTnI) biomarker, with a detection limit as low as 0.98 pg/mL. As a result, the developed platform can be envisaged as an AI-based revolution in microfluidics for point-of-care clinical diagnosis.

Keywords: controlled microfluidic; microfluidic device; artificial intelligence; intelligence controlled

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.