LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical Zero-Mode Waveguide Potential-Dependent Fluorescence of Glutathione Reductase at Single-Molecule Occupancy.

Photo by dilucidus from unsplash

Understanding functional states of individual redox enzymes is important because electron-transfer reactions are fundamental to life, and single-enzyme molecules exhibit molecule-to-molecule heterogeneity in their properties, such as catalytic activity. Zero-mode… Click to show full abstract

Understanding functional states of individual redox enzymes is important because electron-transfer reactions are fundamental to life, and single-enzyme molecules exhibit molecule-to-molecule heterogeneity in their properties, such as catalytic activity. Zero-mode waveguides (ZMW) constitute a powerful tool for single-molecule studies, enabling investigations of binding reactions up to the micromolar range due to the ability to trap electromagnetic radiation in zeptoliter-scale observation volumes. Here, we report the potential-dependent fluorescence dynamics of single glutathione reductase (GR) molecules using a bimodal electrochemical ZMW (E-ZMW), where a single-ring electrode embedded in each of the nanopores of an E-ZMW array simultaneously serves to control electrochemical potential and to confine optical radiation within the nanopores. Here, the redox state of GR is manipulated using an external potential control of the Au electrode in the presence of a redox mediator, methyl viologen (MV). Redox-state transitions in GR are monitored by correlating electrochemical and spectroscopic signals from freely diffusing MV/GR in 60 zL effective observation volumes at single GR molecule average pore occupancy, ⟨n⟩ ∼ 0.8. Fluorescence intensities decrease (increase) at reducing (oxidizing) potentials for MV due to the MV-mediated control of the GR redox state. The spectroelectrochemical response of GR to the enzyme substrate, i.e., glutathione disulfide (GSSG), shows that GSSG promotes GR oxidation via enzymatic reduction. The capabilities of E-ZMWs to probe spectroelectrochemical phenomena in zL-scale-confined environments show great promise for the study of single-enzyme reactions and can be extended to important technological applications, such as those in molecular diagnostics.

Keywords: molecule; fluorescence; zero mode; glutathione; single molecule; potential dependent

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.