LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sensitive, Signal-Modulation Strategy for Discrimination of ECL Spectra and Investigation of Mutual Interactions of Emitters.

Photo by homajob from unsplash

The intensity of electrochemiluminescence (ECL) usually changes rapidly with the progress of the electrochemical process, making it difficult to determine the ECL spectrum with a conventional photomultiplier in a wavelength… Click to show full abstract

The intensity of electrochemiluminescence (ECL) usually changes rapidly with the progress of the electrochemical process, making it difficult to determine the ECL spectrum with a conventional photomultiplier in a wavelength scan model. Herein, a band-pass filter (BPF)-involved modulating strategy is proposed to upgrade a conventional ECL analyzer to a highly sensitive ECL spectrometer without changing its hardware. The ECL spectrum can be figured out by rapidly and/or continuously modulating a part of the ECL intensity-time curve with a BPF array of different central wavelengths as well as correcting the ECL intensity at different measurement times by a univariate cubic polynomial model. This strategy not only can determine the spectrum of ultra-weak emission with high sensitivity via merely modulating the emission within a short period, including the weak self-ECL from either Ru(bpy)32+ or tripropylamine (TPA), but also can demonstrate the interaction between the co-existing emitters. It is shown that the ECL from both Ru(bpy)32+ and TPA of the Ru(bpy)32+/TPA system can be mutually promoted in electrochemical potential and in a concentration-dependent way. The self-ECL of TPA at the potential of 1.24 V can be enhanced from 4.9- to 51-fold with the Ru(bpy)32+ concentration increasing from 0.01 to 0.8 μM. In the presence of 0.04 μM Ru(bpy)32+, the self-ECL of TPA is enhanced by 94- and 10.2-fold at the potential of 1.01 and 1.76 V, respectively. The portable inexpensive BPF turntable device is also useful in spectrum-resolved multi-analyte determination and ratiometric ECL biosensors.

Keywords: ecl; strategy; bpy; self ecl; signal modulation; sensitive signal

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.