LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nuclear Sample Provenance and Age Determination Using Ruthenium Isotopes.

Photo from wikipedia

Measurements of the ruthenium isotopic composition of nuclear samples could provide information about the method of sample production, sample irradiation history, and age. To investigate the feasibility and applicability of… Click to show full abstract

Measurements of the ruthenium isotopic composition of nuclear samples could provide information about the method of sample production, sample irradiation history, and age. To investigate the feasibility and applicability of this idea, this study focuses on measurements of the ruthenium isotope composition of a nominally single-isotope 106Ru radioactivity standard, where the complications of environmental mixing are eliminated. The measurements of the 106Ru standards reveal unusual stable ruthenium isotopic compositions consistent with fissiogenic ruthenium. Three different lots of the material have been investigated, and the isotopic composition is found to be different for lot 1 as compared to lots 2 and 3, indicating a longer irradiation duration incurred during the production of lot 1. Through measurements of 106Ru and its 106Pd daughter, radiochronometry can be used to infer the ages of the samples. Lot 1 is older than lots 2 and 3 and was produced 4.91(5) years before the reference date of 1/1/21, approximately 2.7 years before lots 2 and 3. In an effort to better understand the sample production pathway, the isotopic measurements are compared with nuclear reactor simulations, which suggest that the material was generated by irradiation of a low-enriched uranium target material in a light water reactor. These findings have significant implications for nuclear treaty monitoring, providing an example of the power of ruthenium isotope measurements to discern details of sample origin and history.

Keywords: nuclear sample; sample provenance; age determination; provenance age; age; ruthenium

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.