The past decade has witnessed tremendous progress achieved in taste research, while few studies focus on interactions among taste compounds. Indeed, sweeteners and acidulants are commonly used food additives, and… Click to show full abstract
The past decade has witnessed tremendous progress achieved in taste research, while few studies focus on interactions among taste compounds. Indeed, sweeteners and acidulants are commonly used food additives, and sweet-sour mixtures always provide improved tastes. For example, sensory studies have shown that sourness suppresses sweetness. However, the degree of sweetness suppression by sourness is difficult to evaluate quantitatively and objectively. Therefore, we propose a biohybrid tongue that is constructed by integrating mammalian gustatory epithelium with a microelectrode array chip. The taste quality and intensity information is coded in time-frequency patterns of local field potential. Different response patterns evoked by sweet and sour stimuli are observed, and the response is dose-dependent. Then, interaction effects of sourness against sweetness are quantified. The results indicate that suppression of sweetness by sourness occurs by increasing sourness concentrations. In summary, this study provides a powerful new tool for quantitative evaluation of sweet, sour, and their binary taste interactions that mimic the mammalian taste system.
               
Click one of the above tabs to view related content.