LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Liposome-Mediated In Situ Formation of Type-I Heterojunction for Amplified Photoelectrochemical Immunoassay.

Photo by kellysikkema from unsplash

Exploiting innovative sensing mechanisms and their rational implementation for selective and sensitive detection has recently become one of the mainstream research directions of photoelectrochemical (PEC) bioanalysis. In contrast to existing… Click to show full abstract

Exploiting innovative sensing mechanisms and their rational implementation for selective and sensitive detection has recently become one of the mainstream research directions of photoelectrochemical (PEC) bioanalysis. In contrast to existing conventional strategies, this study presents a new liposome-mediated method via in situ combining ZnInS nanosheets (ZIS NSs) with SnS2 to form a ZIS NSs/SnS2 type-I heterojunction on fluorine-doped tin oxide (FTO) electrodes for highly sensitive PEC immunoassays. Specifically, alkaline phosphatase (ALP)-encapsulated liposomes were confined within 96-well plates by sandwich immunorecognition and subsequently subjected to lysis treatment. Enzymatically produced H2S by the released ALP was then directed to react with Sn(IV) to engender the ZIS NSs/SnS2 type-I heterojunction on the FTO/ZIS NSs-Sn(IV) electrode, resulting in a change in the photogenerated electron-hole transfer path of the photoelectrode and reduction in current signaling. Exemplified by heart-type fatty acid binding protein (h-FABP) as a target, the constructed PEC sensor showed good stability and selectivity in a biosensing system. Under optimal conditions, the as-prepared sensing platform displayed high sensitivity for h-FABP with a dynamic linear response range of 0.1-1000 pg/mL and a lower detection limit of 55 fg/mL. This research presents the liposome-mediated PEC immunoassay based on in situ type-I heterojunction establishment, providing a new protocol for analyzing various targets of interest.

Keywords: type heterojunction; liposome mediated; immunoassay; type; zis nss

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.