LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Agarose-Droplet-Based Digital LAMP Assay for Counting Virus DNA in Single-Particle ICP-MS.

Photo by fusion_medical_animation from unsplash

Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a promising analytical platform for the quantification of biomolecules using elemental tags; however, absolute quantification at extremely low concentrations by ICP-MS… Click to show full abstract

Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a promising analytical platform for the quantification of biomolecules using elemental tags; however, absolute quantification at extremely low concentrations by ICP-MS without a calibration curve remains challenging. Here, we developed a digital loop-mediated isothermal amplification (LAMP) assay for counting hepatitis B virus (HBV) DNA using single-particle (sp) ICP-MS. The sample and LAMP reagents were mixed and encapsulated in agarose droplets, which were generated by homemade centrifugal droplet generators. The agarose droplets were incubated at 65 °C for amplifying the virus DNA with LAMP primers and then cooled to 4 °C for generating "gel" particles during the temperature-dependent "sol-gel" transition. The LAMP amplicons were intercalated into the agarose particles using polyacrylamide-modified LAMP primers, enabling the labeling of dsDNA with [Ru(bpy)2dppz]2+ and the removal of excess reagents. Only those agarose particles, containing virus DNA, could be labeled with 101Ru and detected in spICP-MS. We also embedded the 153Eu-containing polystyrene microspheres into agarose droplets as the internal standard for counting the total number of agarose droplets. The copy number of virus DNA could be counted from the 101Ru/153Eu pulse numbers in spICP-MS. We achieved the lowest quantification of 25 copy μL-1 virus DNA in one analysis without the need for a calibration curve. The developed assay can be easily tuned for counting multiple types of nucleic acid targets and extended for new possibilities of the spICP-MS-based digital assay.

Keywords: virus dna; dna; icp; assay counting; lamp assay; virus

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.