LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Construction of an APE1-Mediated Cascade Signal Amplification Platform for Homogeneously Sensitive and Rapid Measurement of DNA Methyltransferase in Escherichia coli Cells.

Photo from wikipedia

DNA methylation is an essential genomic epigenetic behavior in both eukaryotes and prokaryotes. Deregulation of DNA methyltransferase (Dam MTase) can change the DNA methylation level and cause various diseases. Herein,… Click to show full abstract

DNA methylation is an essential genomic epigenetic behavior in both eukaryotes and prokaryotes. Deregulation of DNA methyltransferase (Dam MTase) can change the DNA methylation level and cause various diseases. Herein, we develop an apurinic/apyrimidinic endonuclease 1 (APE1)-mediated cascade signal amplification platform for homogeneously sensitive and rapid measurement of Dam MTase in Escherichia coli cells. This assay involves a partial double-stranded DNA (dsDNA) substrate and two hairpin signal probes (HP1 and HP2) that are modified with Cy5 and BHQ2 at two ends, respectively. When Dam MTase is present, it methylates the dsDNA substrate, and subsequently, endonuclease DpnI cleaves the methylated substrate, yielding trigger probe 1. Hybridization of trigger probe 1 with HP1 forms a partial dsDNA containing an apurinic/apyrimidinic (AP) site, which is cleaved by APE1 to induce the cyclic cleavage of HP1 and the production of abundant trigger probe 2. Subsequent hybridization of trigger probe 2 with HP2 forms a partial dsDNA with an AP site, inducing the cyclic cleavage of HP2 by APE1. Consequently, cyclic cleavage of HP1 and HP2 induces the generation of abundant Cy5 molecules, which are easily measured by single-molecule imaging. This assay can be performed homogeneously and rapidly within 2 h, which is the shortest among the reported amplification-based assays. Moreover, it exhibits good selectivity and high sensitivity, and it can discriminate Dam MTase from other enzymes and screen inhibitors. Importantly, it can accurately measure the Dam MTase activity in serum and E. coli cells, with promising applications in clinical diagnosis and drug discovery.

Keywords: amplification; dam mtase; dna; coli cells

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.