LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flower-like Gold Nanoparticles for In Situ Tailoring Luminescent Molecules for Synergistic Enhanced Chemiluminescence.

Photo by teveir from unsplash

In recent years, gold nanoparticles (AuNPs) have attracted much attention due to their ease of surface modification, excellent biocompatibility, and extraordinary optoelectronic and catalytic activities. Herein, based on a AuNP-catalyzed… Click to show full abstract

In recent years, gold nanoparticles (AuNPs) have attracted much attention due to their ease of surface modification, excellent biocompatibility, and extraordinary optoelectronic and catalytic activities. Herein, based on a AuNP-catalyzed reaction, a strategy for tailoring luminescent molecules in situ is proposed to trigger an ultrastrong chemiluminescence (CL). In the strategy, flower-like AuNPs are prepared using CL molecular probes (Probe-OH for NaClO/ONOO-) via one-pot synthesis and subsequently act as a tailor for Probe-OH to generate novel CL molecules, allowing a synergistic CL enhancement about 4 times that of initial Probe-OH. Furthermore, by modification with poly(vinylpyrrolidone) (PVP) on the surface, the CL signals (only for NaClO) are amplified by 100 times based on an intermolecular chemically initiated electron exchange luminescence (CIEEL) mechanism. Given the improved sensitivity and selectivity over Probe-OH, the thus-formed CIEEL nanoplatform (PVP-Au) is successfully developed for detecting NaClO in a wide range of 2.5-100 μM, and the detection limit is 10.68 nM. This work provides unprecedented perspectives for expanding this facile and effective strategy for CL amplification based on AuNP catalysis.

Keywords: gold nanoparticles; luminescent molecules; like gold; tailoring luminescent; flower like; chemiluminescence

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.