Cell differentiation plays a vital role in mediating organ formation and tissue repair and regeneration. Although rapid and effective methods to stimulate cell differentiation for clinical purposes are highly desired,… Click to show full abstract
Cell differentiation plays a vital role in mediating organ formation and tissue repair and regeneration. Although rapid and effective methods to stimulate cell differentiation for clinical purposes are highly desired, it remains a great challenge in the medical fields. Herein, a highly effective and conceptual optical method was developed based on a plasmonic chip platform (made of 2D AuNPs nanomembranes). through effective light-augmented plasmonic regulation of cellular bioenergetics (CBE) and an entropy effect at bionano interfaces, to promote rapid cell differentiation. Compared with traditional methods, the developed optoplasmonic method greatly shortens cell differentiation time from usually more than 10 days to only about 3 days. Upon the optoplasmonic treatment of cells, the conformational and vibration entropy changes of cell membranes were clearly revealed through theoretical simulation and fingerprint spectra of cell membranes. Meanwhile, during the treatment process, bioenergetics levels of cells were elevated with increasing mitochondrial membrane potential (Δψm), which accelerates cell differentiation and proliferation. The developed optoplasmonic method is highly efficient and easy to implement, provides a new perspective and avenue for cell differentiation and proliferation, and has potential application prospects in accelerating tissue repair and regeneration.
               
Click one of the above tabs to view related content.