LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Liposome-Embedded Cu2-xAgxS Nanoparticle-Mediated Photothermal Immunoassay for Daily Monitoring of cTnI Protein Using a Portable Thermal Imager.

Photo by thomasjsn from unsplash

Functional photothermal nanomaterials have gained widespread attention in the field of precise cancer therapy and early disease diagnosis due to their unique photothermal conversion properties. However, the relatively narrow temperature… Click to show full abstract

Functional photothermal nanomaterials have gained widespread attention in the field of precise cancer therapy and early disease diagnosis due to their unique photothermal conversion properties. However, the relatively narrow temperature response range and the outputable accuracy of commercial thermometers limit the accurate detection of biomarkers. Herein, we designed a liposome-embedded Cu2-xAgxS amplification-based photothermal sensor for the accurate determination of cardiac troponin I (cTnI) in health monitoring and point-of-care testing (POCT). The combinable 3D-printing detecting device monitored and visualized target signal changes in the testing system under the excitation of near-infrared (NIR) light, which was recorded and evaluated for possible pathogenicity by a smartphone. Notably, we predicted the potentially efficient thermal conversion efficiency of Cu2-xAgxS from the structure and charge density distribution, calculated by the first-principles and density functional theory (DFT), which provided a theoretical basis for the construction of novel photothermal materials, and the experimental results proved the correctness of the theoretical projections. Under optimal conditions, the photothermal immunoassay showed a dynamic linear range of 0.02-10 ng mL-1 with a detection limit of 11.2 pg mL-1. This work instructively introduces promising theoretical research and provides new insights for the development of sensitive portable photothermal biosensors.

Keywords: cu2; cu2 xagxs; embedded cu2; photothermal immunoassay; liposome embedded

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.