LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

iSegMSI: An Interactive Strategy to Improve Spatial Segmentation of Mass Spectrometry Imaging Data.

Photo from wikipedia

Spatial segmentation is a critical procedure in mass spectrometry imaging (MSI)-based biochemical analysis. However, the commonly used unsupervised MSI segmentation methods may lead to inappropriate segmentation results as the MSI… Click to show full abstract

Spatial segmentation is a critical procedure in mass spectrometry imaging (MSI)-based biochemical analysis. However, the commonly used unsupervised MSI segmentation methods may lead to inappropriate segmentation results as the MSI data is characterized by high dimensionality and low signal-to-noise ratio. This process can be improved by the incorporation of precise prior knowledge, which is hard to obtain in most cases. In this study, we show that the incorporation of partial or coarse prior knowledge from different sources such as reference images or biological knowledge may also help to improve MSI segmentation results. Here, we propose a novel interactive segmentation strategy for MSI data called iSegMSI, which incorporates prior information in the form of scribble-regularization of the unsupervised model to fine-tune the segmentation results. By using two typical MSI data sets (including a whole-body mouse fetus and human thyroid cancer), the present results demonstrate the effectiveness of the iSegMSI strategy in improving the MSI segmentations. Specifically, the method can be used to subdivide a region into several subregions specified by the user-defined scribbles or to merge several subregions into a single region. Additionally, these fine-tuned results are highly tolerant to the imprecision of the scribbles. Our results suggest that the proposed iSegMSI method may be an effective preprocessing strategy to facilitate the analysis of MSI data.

Keywords: spectrometry imaging; mass spectrometry; segmentation; strategy; msi data; spatial segmentation

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.