LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Direct Energy Transfer from a pH Glass Electrode to a Liquid Crystal Display.

Photo from wikipedia

Self-powered sensors are attractive because the lack of a dedicated battery makes them environmentally friendly and allows them to be more easily miniaturized. Unfortunately, the development of self-powered potentiometric sensors… Click to show full abstract

Self-powered sensors are attractive because the lack of a dedicated battery makes them environmentally friendly and allows them to be more easily miniaturized. Unfortunately, the development of self-powered potentiometric sensors is challenging because only very limited energy can be harvested from this measurement principle. For the first time, the potential of a high impedance glass pH electrode (130 M Ω) is shown here to be directly read out optically. This is accomplished by a liquid crystal display (LCD) as the electrochromic transducer, which changes its transmission upon imposing an external voltage in the range of 2-3 V. Importantly, owing to its low capacitance of about 50 pF, this process requires a very small transient charge on the order of 100 pC, which may be spontaneously imposable even across pH glass electrodes. For the LCD to be turned on, the cell voltage is boosted by additional Zn2+/Zn elements placed in series. The LCD is found to give a time-dependent absorbance decrease, which is mitigated by adding a high resistance element to attenuate the associated decay. The approach gives repeatable LCD absorbance values that allows one to directly visualize pH with a precision of about 0.01 pH units. The absorbance value depends inversely on pH in a much wider range (pH 1-13) than what is normally observed with optical sensors while based on the same underlying measurement as a potentiometric pH probe.

Keywords: crystal display; liquid crystal; energy; glass; glass electrode

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.