LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

General Strategies to Construct Highly Efficient Sensing Interfaces for Metal Ions Detection from the Perspective of Catalysis.

Photo from wikipedia

Constructing high-effective electrode sensing interfaces has been considered an effective method for electrochemical detection toward heavy metal ions (HMIs). However, most research has been devoted to enhancing the stripping currents… Click to show full abstract

Constructing high-effective electrode sensing interfaces has been considered an effective method for electrochemical detection toward heavy metal ions (HMIs). However, most research has been devoted to enhancing the stripping currents of HMIs by simply improving the adsorptive capacity and conductivity of the electrode modified materials, while lacking theoretical guidelines in fabricating catalytic sensing interfaces. Besides, the understanding of detection mechanisms is quite unscientific from the perspective of catalysis. This perspective summarizes five general strategies in designing highly efficient sensing interfaces in the recent five years, including modulating crystal phases, orientations and planes, defect engineering, ionic valence state cycle engineering, adsorption in situ catalysis strategy, and construction of atomic level catalytic active sites. What's more, the catalytic mechanisms for improving the signals of HMIs, such as boosting the electron transfer rates and conversion rates, lowering the energy barriers, etc., are introduced and emphasized. This study has a great significance in directionally controlling functionalized electrochemical sensors to achieve excellent sensitivity and selectivity in detecting environmental pollutants from the view of catalysis, and it also brings enlightenments and guidance to develop new electroanalytical methods.

Keywords: sensing interfaces; catalysis; metal ions; general strategies; detection; perspective catalysis

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.