LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Redox-Responsive Polymer Nanoreactors Based on Methionine Sulfoxide for Monitoring Cell Adhesion.

Photo from wikipedia

Expanding the category of redox-responsive monomers suitable for enzymolysis efficiency regulation and application to living biosystems is a prerequisite to complementing the fabrication of stimuli-responsive polymer nanoreactors. However, the development… Click to show full abstract

Expanding the category of redox-responsive monomers suitable for enzymolysis efficiency regulation and application to living biosystems is a prerequisite to complementing the fabrication of stimuli-responsive polymer nanoreactors. However, the development of redox-responsive monomers is severely limited by chemical oxidation and low biocompatibility. This work presents a protocol for overcoming this problem by the self-assembly of redox-responsive polymer nanoreactors containing segments of water-soluble methionine sulfoxide residues and poly(styrene-co-maleic anhydride-l-methionine), and by immobilizing α-l-fucosidase into the nanoreactors. These nanoreactors demonstrate highly selective responses to a mild redox triggered by H2O2 from the initial state (VO) to an oxidation state (VO1), and are reduced by methionine sulfoxide reductase A to mold the VO' state. It resulted in significantly enhanced enzymolysis efficiency and maximal reaction rates 8.1-fold (VO) and 23.3-fold (VO1) higher than those of the free enzyme. Moreover, cell adhesion was evaluated by the highly selective determination of l-fucose on cell surfaces. Using a combination of chemical oxidation and enzymatic reduction, this work achieves reiterative enzymolysis efficiency regulation of polymer nanoreactors, which has great potential for the construction of redox-responsive nanoreactors and for monitoring cell adhesion.

Keywords: cell; responsive polymer; polymer nanoreactors; redox; redox responsive

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.