LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selective Chemical Labeling Strategy for Oligonucleotides Determination: A First Application to Full-Range Profiling of Transfer RNA Modifications.

Photo from wikipedia

To date, the extremely high polarity and poor signal intensity of macromolecular nucleic acids are greatly impeding the progress of mass spectrometry technology in the quality control of nucleic acid… Click to show full abstract

To date, the extremely high polarity and poor signal intensity of macromolecular nucleic acids are greatly impeding the progress of mass spectrometry technology in the quality control of nucleic acid drugs and the characterization of DNA oxidation and RNA modifications. We recently described a general N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA) labeling method for oligonucleotide determination and applied it to the full-range profiling of tRNA in vitro and in vivo studies for the first time. The primary advantages of this method include strong retention, no observable byproducts, predictable and easily interpreted MS2 data, and the circumvention of instrument harmful reagents that were necessary in previous methods. Selective labeling of N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide to the terminal phosphate groups of oligonucleotides endows it broadly applicable for DNA/RNA profiling. Moreover, the improvement of sequence coverage was achieved in yeast tRNAphe(GAA) analysis owing to this method's good detection capability of 1-12 nucleotides in length. We also extended this strategy to determine the abundance of modified bases and discover new modifications via digesting RNA into single-nucleotide products, promoting the comprehensive mapping of RNA. The easy availability of derivatization reagent and the simple, rapid one-step reaction render it easy to operate for researchers. When applied in characterizing tRNAs in HepG2 cells and rats with nonalcoholic fatty liver disease, a fragment of U[m1G][m2G], specific for tRNAAsn(QUU) in cells, was significantly upregulated, indicating a possible clue to nonalcoholic fatty liver disease pathogenesis.

Keywords: rna; full range; range profiling; determination; rna modifications

Journal Title: Analytical chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.