LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selected Ion Flow Tube Mass Spectrometry as a Tool to Understand Hydride Atomization and the Fate of Free Analyte Atoms in an Externally Heated Quartz Tube Atomizer.

Photo from wikipedia

Hydride atomization and the fate of free analyte atoms in an externally heated quartz tube atomizer (QTA) were investigated employing selected ion flow tube mass spectrometry (SIFT-MS). SIFT-MS proved to… Click to show full abstract

Hydride atomization and the fate of free analyte atoms in an externally heated quartz tube atomizer (QTA) were investigated employing selected ion flow tube mass spectrometry (SIFT-MS). SIFT-MS proved to be ideally suited to study water concentration in gases leaving the atomizer. This made it possible to quantify the oxygen "contaminant" flow rate to QTA as 0.04-0.05 mL min-1. This is valid for typical conditions of hydride generation. Most significantly, studies of temperature influence on water concentration resulted in detailed insight into hydrogen radical-forming reactions between oxygen and hydrogen. Minimum QTA temperatures required to generate hydrogen radicals under a variety of different flow rates and compositions of the QTA atmosphere were found to be in the range between 585 and 800 °C. The ability of SIFT-MS to detect extremely low concentrations of arsane and selane was employed to quantify the fraction of As and Se removed from the QTA in the form of hydride in dependence on QTA temperature under typical conditions of hydride generation. It was found that free As atoms formed by atomization of arsane decay to different species than to arsane. In the case of selane under typical atomization conditions, the efficiency of the decay of free Se atoms to selane was between 50 and 100% in dependence on actual flow rates and compositions of the QTA atmosphere.

Keywords: atomization fate; flow; atomizer; hydride atomization; tube

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.