LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Colorimetric and Photocurrent-Polarity-Switching Photoelectrochemical Dual-Mode Sensing Platform for Highly Selective Detection of Mercury Ions Based on the Split G-Quadruplex-Hemin Complex.

Photo by averymeeker from unsplash

Mercury ion (Hg2+) is one of the most harmful heavy metal ions with the greatest impact on public health. Herein, based on the excellent catalytic activity toward 3,3',5,5'-tetramethylbenzidine (TMB) and… Click to show full abstract

Mercury ion (Hg2+) is one of the most harmful heavy metal ions with the greatest impact on public health. Herein, based on the excellent catalytic activity toward 3,3',5,5'-tetramethylbenzidine (TMB) and the strong photocurrent-polarity-switching ability to SnS2 photoanode of the split G-quadruplex-hemin complex, the magnetic NiCo2O4@SiO2-NH2 sphere-assisted colorimetric and photoelectrochemical (PEC) dual-mode sensing platform was developed for the Hg2+ assay. First, the amino-labelled single-stranded DNA1 (S1) was immobilized on NiCo2O4@SiO2-NH2 and then partly hybridized with another single-stranded DNA2 (S2). When Hg2+ was present, the thymine-Hg2+-thymine base pairs between S1 and S2 were formed, causing the formation of the split G-quadruplex in the presence of K+. After addition of hemin, the split G-quadruplex-hemin complex was obtained and effectually catalyzed the H2O2-mediated oxidation of TMB. Thus, the color and absorbance intensity of the TMB solution were changed, resulting in the visual and colorimetric detection of Hg2+. The linear response range is 10 pM to 10 nM, and the detection limit is 3.8 pM. Meanwhile, the above G-quadruplex-hemin complex effectively switched the photocurrent polarity of SnS2-modified indium tin oxide electrode, leading to the sensitive and selective PEC assay of Hg2+ with a linear response range of 5 pM to 500 nM and a detection limit of 2.3 pM. Moreover, the developed dual-mode sensing platform provided mutual authentication of detection results in different modes, effectively improving the assay accuracy and confidence, and may have a good potential application in highly sensitive, selective, and accurate determination of Hg2+ in environmental fields.

Keywords: split quadruplex; detection; quadruplex hemin; hemin; hemin complex

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.