LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a Miniature Mass Spectrometry System for Point-of-Care Analysis of Lipid Isomers Based on Ozone-Induced Dissociation.

Photo from wikipedia

Disorder of lipid homeostasis is closely associated with a variety of diseases. Although mass spectrometry (MS) approaches have been well developed for the characterization of lipids, it still lacks an… Click to show full abstract

Disorder of lipid homeostasis is closely associated with a variety of diseases. Although mass spectrometry (MS) approaches have been well developed for the characterization of lipids, it still lacks an integrated and compact MS system that is capable of rapid and detailed lipid structural characterization and can be conveniently transferred into different laboratories. In this work, we describe a novel miniature MS system with the capability of both ozone-induced dissociation (OzID) and collision-induced dissociation (CID) for the assignment of sites of unsaturation and sn-positions in glycerolipids. A miniature ozone generator was developed, which can be operated at a relatively high pressure. By maintaining high-concentration ozone inside the linear ion trap, OzID efficiency was significantly improved for the identification of C═C locations in unsaturated lipids, with reaction times as short as 10 ms. Finally, the miniature OzID MS system was applied to the analysis of C═C locations and sn-positions of lipids from biological samples. Direct sampling and fast detection of changes in phospholipid isomers were demonstrated for the rapid discrimination of breast cancer tissue samples, showing the potential of the miniature OzID MS system for point-of-care analysis of lipid isomer biomarkers in complex samples.

Keywords: miniature; system; induced dissociation; analysis; ozone

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.