LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Multicalibration Urea Potentiometric Sensing Array Based on Au@urease Nanoparticles and Its Application in Home Detection.

Photo by brina_blum from unsplash

Home potentiometric sensing devices can real-time monitor personal health status and are widely used in the prevention and management of related diseases. However, variations in the composition and the pH… Click to show full abstract

Home potentiometric sensing devices can real-time monitor personal health status and are widely used in the prevention and management of related diseases. However, variations in the composition and the pH of the sample matrix tend to change the basic potential and response slope of some potentiometric sensors, thus affecting detection reliability. Therefore, this work uses the detection of urea in urine as a model to improve reliability of the potentiometric sensor in home detection. Au@urease nanoparticles were synthesized as the sensing material to improve the stability of the urease-based potentiometric sensor. Meanwhile, a multicalibrated urea potential (MCUP) sensing array was designed, which consists of a urea electrode group, a pH electrode group, and a reference channel. The urea electrode group and the pH electrode group contain respectively a sensing channel and a calibration channel. The basic potential of sensing channels can be calibrated through the corresponding calibration channels. Moreover, the pH electrode group can not only measure the pH values of the samples but also calibrate the response slope of the urea electrode group through the calibration coefficient, thus improving the reliability of home detection. Consequently, the potentiometric sensing array based on the enzyme reaction can be applied in body fluids with a wide pH range.

Keywords: potentiometric sensing; home detection; detection; electrode group

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.