LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lysosomal Adenosine Triphosphate-Activated Upconversion Nanoparticle/Carbon Dot Composite for Ratiometric Imaging of Hepatotoxicity.

Photo by quangtri from unsplash

Drug-induced hepatotoxicity (DIH) is a common cause of acute liver injury, endangering human health. Intracellular adenosine triphosphate (ATP) content in hepatocytes is related to hepatotoxicity. Thus, monitoring the dynamic changes… Click to show full abstract

Drug-induced hepatotoxicity (DIH) is a common cause of acute liver injury, endangering human health. Intracellular adenosine triphosphate (ATP) content in hepatocytes is related to hepatotoxicity. Thus, monitoring the dynamic changes in lysosomal ATP is promising to further understand the pathogenesis and accurate evaluation of DIH. Herein, we developed a lysosomal ATP-activated upconversion nanoprobe by decorating ATP-sensitive carbon dots (CDs) on the surface of upconversion nanoparticles (UCNPs) for ratiometric imaging of hepatotoxicity. Owing to the excellent optical characteristics of UCNPs as well as the high selectivity and biocompatibility of CDs, this nanoprobe showed robust reversibility and good sensitivity to ATP in an acidic environment. Noticeably, it was successfully applied in imaging the lysosomal ATP levels fluctuation in living cells and deep tissues and used for studying the production and remediation pathways of acetaminophen-induced hepatotoxicity. This nanoprobe is significant for further understanding the pathogenesis of DIH and may be a potentially effective tool for the clinical evaluation of DIH.

Keywords: activated upconversion; dih; ratiometric imaging; hepatotoxicity; adenosine triphosphate; imaging hepatotoxicity

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.