We introduce a novel nuclear magnetic resonance (NMR) tool for determining position-specific carbon (13C/12C) isotope ratios within complex organic molecules. This analytical advancement allows us to measure position-specific isotope ratios… Click to show full abstract
We introduce a novel nuclear magnetic resonance (NMR) tool for determining position-specific carbon (13C/12C) isotope ratios within complex organic molecules. This analytical advancement allows us to measure position-specific isotope ratios of samples that contain impurities with NMR peaks that overlap with the signals of interest. The method involves collecting a series of alternating 13C-coupled and 13C-decoupled 1H NMR spectra using an NMR pulse sequence designed to optimize temperature stability, followed by a data reduction scheme that allows the signals of interest to be isolated from signals of impurities. The method was validated using glycine reference materials with known 13C/12C ratios from the US Geological Survey (USGS) into which impurities typically found in amino acid samples were intentionally introduced. Following validation, the method was used to determine position-specific 13C/12C ratios in a set of USGS l-valine materials (USGS73, -74, -75) that contain significant impurities associated with their biological origin. The l-valines were found to contain distinct intramolecular isotope variability, and the 13Cα isotope spikes in USGS74 and USGS75 were clearly detected, where they preserve carbon isotope ratios of -4.8 ± 0.9‰ and +11.5 ± 0.8‰, respectively. Carbon isotope abundance at the beta and gamma positions indicates that the USGS73 l-valine was obtained from a different source than USGS74 and -75. This analytical approach is a significant step forward in the field of position-specific isotope analysis at natural abundance via NMR because it enables the investigation of samples that contain impurities which are typically present in samples derived from natural sources.
               
Click one of the above tabs to view related content.