LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PddCas: A Polydisperse Droplet Digital CRISPR/Cas-Based Assay for the Rapid and Ultrasensitive Amplification-Free Detection of Viral DNA/RNA.

Photo from wikipedia

Clustered regularly interspaced short palindromic repeats (CRISPR)-based assays have been an emerging diagnostic technology for pathogen diagnosis. In this work, we developed a polydisperse droplet digital CRISPR-Cas-based assay (PddCas) for… Click to show full abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-based assays have been an emerging diagnostic technology for pathogen diagnosis. In this work, we developed a polydisperse droplet digital CRISPR-Cas-based assay (PddCas) for the rapid and ultrasensitive amplification-free detection of viral DNA/RNA with minimum instruments. LbaCas12a and LbuCas13a were used for the direct detection of viral DNA and RNA, respectively. The reaction mixtures were partitioned with a common vortex mixer to generate picoliter-scale polydisperse droplets in several seconds. The limit of detection (LoD) for the target DNA and RNA is approximately 100 aM and 10 aM, respectively, which is about 3 × 104-105 fold more sensitive than corresponding bulk CRISPR assays. We applied the PddCas to successfully detect severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human papillomavirus type 18 (HPV 18) in clinical samples. For the 23 HPV 18-suspected cervical epithelial cell samples and 32 nasopharyngeal swabs for SARS-CoV-2, 100% sensitivity and 100% specificity were demonstrated. The dual-gene virus detection with PddCas was also established and verified. Therefore, PddCas has potential for point-of-care application and is envisioned to be readily deployed for frequent testing as part of an integrated public health surveillance program.

Keywords: detection viral; crispr; viral dna; detection; dna rna

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.