LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Online Cross-Linking of Peptides and Proteins during Contained-Electrospray Ionization Mass Spectrometry.

Photo from wikipedia

Recent advancements in mass spectrometry (MS) now enable all levels of protein structures to be characterized, including primary protein sequence, post-translational modifications, and three-dimensional protein conformations. However, protein conformational studies… Click to show full abstract

Recent advancements in mass spectrometry (MS) now enable all levels of protein structures to be characterized, including primary protein sequence, post-translational modifications, and three-dimensional protein conformations. However, protein conformational studies by MS require the use of many separate techniques that are performed independently of each other. Herein, we described a contained-electrospray (ES) experiment that has potential to integrate peptide/protein cross-linking with the general MS workflow. In our experiment, cross-linking of protein/peptide occurs simultaneously with ionization after analytes, and cross-linkers are sprayed from two separate ES emitters. The online cross-linking process occurring in the charged microdroplet environment was optimized using trilysine peptide and bis(sulfosuccinimidyl)suberate cross-linker. We detected the electrostatic complex between analyte and cross-linker, the mono-linked intermediate, and the fully cross-linked product, allowing us to correctly predict the sequence of reaction events in the cross-linking process. Importantly, we observed that the terminal fully cross-linked product is composed of two distinct conformations. In one form, the product involved cross-linking between two ε-NH2 amines in lysine residues, while the other conformer was formed by a reaction between one ε-NH2 amine and the N-terminus. The experimental conditions for selecting one cross-linked species over others during the online ES ionization-MS analysis have been detailed. Appropriate parameters enabled the reaction between α-lactalbumin proteins and cross-linkers using a non-denaturing spray condition. These results establish a framework for a future development in high-throughput structural MS method, where all levels of protein information can be gathered in a single experiment.

Keywords: online cross; mass spectrometry; cross linking; contained electrospray; cross

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.