LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetism-Assisted Density Gradient Separation of Microplastics.

Photo from wikipedia

A versatile method for the efficient separation of different types of microplastics from particle mixtures is presented. Magnetism-assisted density gradient separation (Mag-DG-Sep) relies on a bespoke separation cell connected to… Click to show full abstract

A versatile method for the efficient separation of different types of microplastics from particle mixtures is presented. Magnetism-assisted density gradient separation (Mag-DG-Sep) relies on a bespoke separation cell connected to a gradient pump and located between two like-pole-facing neodymium magnets. In Mag-DG-Sep, particle mixtures initially sunk in water are subjected to a gradient of increasing concentration of MnCl2, enabling the sequential suspension and collection of particles with different densities. The suspension process is assisted by the paramagnetism of the MnCl2 solution placed between the two magnets, which contributes to focusing the ascending particles from the bottom of the separation cell to the outlet, thus enhancing the resolution of the separation process. To demonstrate the concept, a mixture of polyethylene (PE) polymer particles with a similar size range (180-212 μm) but different densities (ca. 0.98, 1.025, 1.08, and 1.35 g cm-3) was selectively separated in a single Mag-DG-Sep run. These particles were also efficiently separated when mixed with other types of particles, such as glass or soil. A generic linear MnCl2 gradient can be directly applied for sample screening covering a broad range of densities (0.98-2.20 g cm-3), while steps can be introduced in the gradient, increasing the separation resolution of particles with close densities (1.025-1.08 g cm-3). As a proof-of-concept application, Mag-DG-Sep facilitated sample preparation of microplastics present in a soil sample prior to their examination by attenuated total reflection Fourier-transform infrared spectroscopy.

Keywords: gradient separation; separation; assisted density; density gradient; gradient; magnetism assisted

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.