LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cucurbituril Enhanced Electrochemiluminescence of Gold Nanoclusters via Host-Guest Recognition for Sensitive D-Dimer Sensing.

Photo by teveir from unsplash

Gold nanoclusters (AuNCs) are promising electrochemiluminescence (ECL) signal probes for their outstanding biocompatibility, unusual molecule-like structures, and versatile optical and electrochemical properties. Nevertheless, their relatively low ECL efficiency and poor… Click to show full abstract

Gold nanoclusters (AuNCs) are promising electrochemiluminescence (ECL) signal probes for their outstanding biocompatibility, unusual molecule-like structures, and versatile optical and electrochemical properties. Nevertheless, their relatively low ECL efficiency and poor stability in aqueous solutions hindered their application in the ECL sensing field. Herein, a facile host-guest recognition strategy was proposed to enhance the ECL efficiency and stability of Au NCs by rigidifying the surface of ligand-stabilized AuNCs via supramolecular self-assembly between cucurbiturils[7] (CB[7]) and l-phenylalanine (l-Phe). Meanwhile, mercaptopropionic acid (MPA) was introduced as a ligand in order to cooperatively enhance the performance of the AuNCs and facilitate the link between AuNCs and bioactive substances. The prepared CB[7]/l-Phe/MPA-AuNCs had a higher ECL emission efficiency, achieving about 2-fold stronger ECL intensity than that of l-Phe/MPA-AuNCs. In addition, after non-covalent modification with CB[7], the finite stability of the papered AuNCs was significantly improved. The prepared CB[7]/l-Phe/MPA-AuNCs showed excellent D-dimer sensing results, exhibiting a linear range from 50.00 fg/mL to 100.0 ng/mL and a detection limit of 29.20 fg/mL (S/N = 3). Our work demonstrated that the host-guest self-assembly strategy provided a universal approach for strengthening the ECL efficiency and stability of nanostructures on an ultra-small scale.

Keywords: host guest; gold nanoclusters; guest recognition; dimer sensing; host

Journal Title: Analytical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.