LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phosphorescent Carbon Dots as Long-Lived Donors To Develop an Energy Transfer-Based Sensing Platform.

Photo by sashbo70 from unsplash

Employing long-lived luminescent materials to design a chemical sensing platform can eliminate real-time excitation and background fluorescence. However, the realization of long-lived emissions in aqueous media was limited to transition-metal… Click to show full abstract

Employing long-lived luminescent materials to design a chemical sensing platform can eliminate real-time excitation and background fluorescence. However, the realization of long-lived emissions in aqueous media was limited to transition-metal complexes, doped quantum dots, organic crystals, and inorganic persistent phosphors, which suffer from the drawbacks of large size, expensive elements, and poor dispersibility. In this work, phosphorescent carbon dots (CDs) were covalently immobilized in a silica matrix (CDs@SiO2) to achieve afterglow emission in an aqueous dispersion. CDs@SiO2 with long lifetime (∼1.6 s) was utilized as an energy donor to fabricate nonradiative energy transfer systems with various organic dyes through the surface micelle self-assembly method. Benefiting from the high energy transfer efficiency between CDs@SiO2 and organic dyes, multicolor afterglow emissions were successfully obtained in aqueous media. As a proof of concept, a ratiometric phosphorescent probe using CDs@SiO2 as a donor and Hg2+-responsive rhodamine derivative as an acceptor was designed. Hg2+ triggered the energy transfer process between the donor-acceptor pair, leading to the sensitive detection of Hg2+ ions. The work presented here provides opportunities to develop chemical sensors with low background interferences and easily recognizable signals.

Keywords: sensing platform; phosphorescent; long lived; energy; energy transfer

Journal Title: Analytical chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.