LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of Two-Dimensional Offline Coupling of Asymmetrical Flow Field-Flow Fractionation and Capillary Electrophoresis for the Separation of a Five-Component Submicrometer Particle Mixture.

Photo by maxwbender from unsplash

Submicrometer colloidal particles are widely applied in a variety of industrial products. While precise size and surface charge control is crucial to the stability and functionality of these materials, a… Click to show full abstract

Submicrometer colloidal particles are widely applied in a variety of industrial products. While precise size and surface charge control is crucial to the stability and functionality of these materials, a tool to determine these properties with sufficient resolution, detection sensitivity, and robustness is still not available. The recently reported offline coupling of asymmetrical flow field-flow fractionation and capillary electrophoresis (AF4 × CE) shows success in improving the separation resolution for nanoparticles; however, challenges remain for sensitive multiple-component submicrometer particle analysis because of wide size and mobility distributions. We here report offline coupling of an AF4 method and a CE method, which utilized the online reversed electrode polarity stacking mode, to successfully characterize a five-component, submicrometer particle mixture. The mixture was successfully separated and detected with an improved inter- and intracomponent resolution. Therefore, our developed platform holds great potential for industrial applications involving multiple-component particle mixtures.

Keywords: offline coupling; component submicrometer; submicrometer particle; submicrometer; particle

Journal Title: Analytical chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.