LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nucleic Acid Amplification by Template-Dominated Click Chemistry for Ultrasensitive DNA/RNA Detection on an Electrochemical Readout Platform.

Photo by trnavskauni from unsplash

As an enzyme-free exponential nucleic acid amplification method, the click chemistry-mediated ligation chain reaction (ccLCR) has shown great prospects in the molecular diagnosis. However, the current optics-based ccLCR is challenged… Click to show full abstract

As an enzyme-free exponential nucleic acid amplification method, the click chemistry-mediated ligation chain reaction (ccLCR) has shown great prospects in the molecular diagnosis. However, the current optics-based ccLCR is challenged by remarkable nonspecific amplification, severely hindering its future application. This study demonstrated that the severe nonspecific amplification was generated probably due to high random collision in the high DNA probe concentration (μM level). To solve this hurdle, a nucleic acid template-dominated ccLCR was constructed using nM-level DNA probes and read on an electrochemical platform (cc-eLCR). Under the optimal conditions, the proposed cc-eLCR detected a low-level nucleic acid target (1 fM) with a single-base resolution. Furthermore, this assay was applied to detect the target of interest in cell extracts with a satisfactory result. The proposed cc-eLCR offers huge possibility for click chemistry-mediated enzyme-free exponential nucleic acid amplification in the application of medical diagnosis and biomedical research.

Keywords: dna; click chemistry; chemistry; acid amplification; nucleic acid

Journal Title: Analytical chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.