LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polymer Molecular Weights via DOSY NMR.

Photo by samuelgirven from unsplash

Diffusion-ordered spectroscopy (DOSY) 1H nuclear magnetic resonance (1H NMR) has become a powerful tool to characterize the molecular weights of polymers. Compared to common characterization techniques, such as size exclusion… Click to show full abstract

Diffusion-ordered spectroscopy (DOSY) 1H nuclear magnetic resonance (1H NMR) has become a powerful tool to characterize the molecular weights of polymers. Compared to common characterization techniques, such as size exclusion chromatography (SEC), DOSY is faster, uses less solvent, and does not require a purified polymer sample. Poly(methyl methacrylate) (PMMA), polystyrene (PS), and polybutadiene (PB) molecular weights were determined by the linear correlation between the logarithm of their diffusion coefficients (D) and the logarithm of their molecular weights based on SEC molecular weights. Here, we emphasize the importance of the preparation needed to generate the calibration curves, which includes choosing the correct pulse sequence, optimizing parameters, and sample preparation. The limitation of the PMMA calibration curve was investigated by increasing the dispersity of PMMA. Additionally, by accounting for viscosity in the Stokes-Einstein equation, a variety of solvents were used to produce a "universal" calibration curve for PMMA to determine molecular weight. Furthermore, we place a spotlight on the increasing importance of DOSY NMR being incorporated into the polymer chemist's toolbox.

Keywords: via dosy; polymer molecular; molecular weights; weights via; pmma; dosy nmr

Journal Title: Analytical chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.