Label-free imaging of nanoscale targets with intrinsic properties is crucial for chemistry, physics, and life science to unveil the underlying mechanisms. Plasmonic imaging techniques are particularly attractive because they allow… Click to show full abstract
Label-free imaging of nanoscale targets with intrinsic properties is crucial for chemistry, physics, and life science to unveil the underlying mechanisms. Plasmonic imaging techniques are particularly attractive because they allow real-time imaging, providing insights into nanoscale detection and nanocatalysis. Here, we present a high-resolution plasmonic imaging method that is capable of imaging nanomaterials with high morphological fidelity and high throughput. We demonstrate that this approach allows for high-resolution plasmonic imaging of various nanomaterials ranging from nanoparticles and nanowires to two-dimensional nanomaterials and accurate tracking of the interfacial dynamics of nanoparticles. Given the experimental simplicity and capacity for label-free and real-time imaging of nanomaterials with high spatial resolution and high throughput, this approach can serve as a promising platform for characterizing nanomaterials at the single-particle level.
               
Click one of the above tabs to view related content.