LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Micro-Quartz Crystal Tuning Fork-Based Photodetector Array for Trace Gas Detection.

Photo from wikipedia

In this paper, a micro-quartz crystal tuning fork (M-QCTF) was first demonstrated for developing a low-cost, highly sensitive quartz tuning fork photodetector array for spectroscopic applications. A gas sensing system… Click to show full abstract

In this paper, a micro-quartz crystal tuning fork (M-QCTF) was first demonstrated for developing a low-cost, highly sensitive quartz tuning fork photodetector array for spectroscopic applications. A gas sensing system based on the M-QCTF photodetector and highly sensitive wavelength modulation spectroscopy was developed. Typically, an atmospheric greenhouse gas methane (CH4) molecule was selected as the target analyte for evaluating the M-QCTF and standard commercial QCTF detectivity. The results indicate that the M-QCTF photodetector exhibits ∼3.3 times sensitivity enhancement compared to the standard commercial QCTF. The long-term stability was evaluated by using the Allan deviation analysis method; a minimum detection limit of 1.2 ppm was achieved with an optimal integration time of 85 s, and the corresponding normalized noise equivalent absorption coefficient was calculated to be 4.45 × 10-10 cm-1 W/√Hz. Finally, a two-M-QCTF array detection scheme was experimentally demonstrated, and a signal-to-noise ratio enhancement factor of more than 1.7 times compared to that achieved using a single M-QCTF photodetector was realized, which proves a great potential for developing ultra-sensitive quartz tuning fork photodetector arrays for various applications.

Keywords: gas; photodetector; array; quartz; tuning fork

Journal Title: Analytical chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.