LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

"Iridium Signature" Mass Spectrometric Probes: New Tools Integrated in a Liquid Chromatography-Mass Spectrometry Workflow for Routine Profiling of Nitric Oxide and Metabolic Fingerprints in Cells.

Photo from wikipedia

Nitric oxide (NO) is a highly reactive signaling molecule involved in diverse biological processes. Simultaneous profiling of NO and associated metabolic fingerprints in a single assay allows more accurate assessments… Click to show full abstract

Nitric oxide (NO) is a highly reactive signaling molecule involved in diverse biological processes. Simultaneous profiling of NO and associated metabolic fingerprints in a single assay allows more accurate assessments of cell states and offers the possibility to better understand its exact biological roles. Herein, a multiplexing LC-MS workflow was established for simultaneous detection of intracellular NO and various metabolites based on a novel "iridium signature" mass spectrometric probe (Ir-MSP841). This Ir-MSP841 can convert highly liable NO to a stable permanently charged triazole product (Ir-TP852), enabling direct MS detection of NO. This 191/193Ir-signature mass spectrometric probe-based approach is endowed with overwhelming advantages of interference-free, high quantitative accuracy, and great sensitivity (limit of detection down to 0.14 nM). It also reveals good linearity over a wide concentration range 12.5-500 nM and has been successfully employed for exploring the release behaviors of three representative NO donors in cells. Meanwhile, metabolic profiling results reveal that varying the concentrations of NO has distinct effects on various cellular metabolites. This study provides a robust, sensitive, and versatile method for simultaneous detection of NO and numerous metabolites in a single LC-MS run and expands its applications in biomedical research.

Keywords: mass spectrometric; metabolic fingerprints; signature mass; nitric oxide; mass

Journal Title: Analytical chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.