LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One-Pot Synthesis of Fluorescent Silicon Nanoparticles for Sensitive and Selective Determination of 2,4,6-Trinitrophenol in Aqueous Solution.

Photo from wikipedia

Because 2,4,6-trinitrophenol (TNP) and its analogues such as 2,4,6-trinitrotoluene (TNT) possess similar chemical structures and properties, the reliable and accurate detection of TNP from its analogues still remains a challenging… Click to show full abstract

Because 2,4,6-trinitrophenol (TNP) and its analogues such as 2,4,6-trinitrotoluene (TNT) possess similar chemical structures and properties, the reliable and accurate detection of TNP from its analogues still remains a challenging task. In the present work, a selective and sensitive method based on the water-soluble silicon nanoparticles (SiNPs) for the determination of TNP was established. The SiNPs with good thermostability and excellent antiphotobleaching capability were prepared via a simple one-pot method. Compared with the synthesized time of other nanomaterials with respect to the detection of TNP, this method avoided a multistep and time-consuming synthesis procedure. Significantly, the fluorescence of the SiNPs could be remarkably quenched by TNP via an inner filter effect. A wide linear range was obtained from 0.02 to 120 μg/mL with a limit of detection of 6.7 ng/mL. The method displayed excellent selectivity toward TNP over other nitroaromatic explosives. The proposed fluorescent method was successfully applied to the analysis of TNP. Moreover, a straightforward and convenient fluorescent filter paper sensor was developed for the detection of TNP, providing a valuable platform for TNP sensing in public safety and security.

Keywords: detection; silicon nanoparticles; method; tnp; one pot

Journal Title: Analytical chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.