LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Throughput in Situ Pressure Analysis of Lithium-Ion Batteries.

Photo from wikipedia

Many degradation processes in lithium-ion batteries are accompanied by gas evolution and therefore lead to an increase in internal cell pressure. This causes serious safety concerns for state-of-the-art lithium-ion batteries,… Click to show full abstract

Many degradation processes in lithium-ion batteries are accompanied by gas evolution and therefore lead to an increase in internal cell pressure. This causes serious safety concerns for state-of-the-art lithium-ion batteries, calling for a thorough investigation of the origin and the magnitude of such processes. Herein we introduce a multichannel in situ pressure measurement system that allows for the high-throughput quantification of gas evolution under realistic battery conditions. The capability of the system was demonstrated through its application on Li4Ti5O12 half cells. The pressure changes could be divided into an irreversible and a reversible part, where the latter is caused by the deposition and dissolution of elemental lithium during cycling. Comparison of the measured and the theoretical reversible pressure changes showed a close match, indicating the high accuracy of the system. Additionally, the irreversible part observed in the pressure changes was attributed to gas evolution, as confirmed by complementary measurements using differential electrochemical mass spectrometry. To show the practicality of the system, the temperature dependence of gas evolution in Li1+xNi0.6Co0.2Mn0.2O2 full cells was investigated. Enhanced gas evolution was observed at elevated temperature, which is partly attributed to the thermal decomposition of the conducting salt LiPF6.

Keywords: gas evolution; ion batteries; pressure; lithium ion

Journal Title: Analytical chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.