The following work describes a combined enzymatic and bioanalytical method that permits absolute quantitation of metabolites in biological samples without the requirement for reference metabolite standards. This technique was exemplified… Click to show full abstract
The following work describes a combined enzymatic and bioanalytical method that permits absolute quantitation of metabolites in biological samples without the requirement for reference metabolite standards. This technique was exemplified using a radio (14C) isotopologue and a stable (13C6) isotopologue of acetaminophen as substrates for in vitro biosynthesis of the corresponding radio and stable isotope labeled metabolites, namely, 14C- and 13C6-glucuronides and sulfates. By supplanting the use of authentic metabolite standards, traditionally used to calibrate 13C6-metabolites via liquid chromatography-tandem mass spectrometry (LC-MS/MS), 13C6-metabolites were radiocalibrated by their 14C-isotopologues via liquid chromatography coupled with radioactivity detection and mass spectrometry (LC-RAD/MS). The radiocalibrated 13C6-isotopologues were in turn used to quantitate acetaminophen and its corresponding metabolites in rat plasma samples by LC-MS/MS. Variation between this and a conventional LC-MS/MS method using authentic standards for calibration was within ±17%, permitting its use in preclinical and clinical applications. Since authentic metabolite standards are not required under the concept of radio and stable isotopologues using adapted LC-RAD/MS protocols, significantly fewer resources are required to support accurate metabolite quantitation which in turn enables efficient analysis of simple and complex metabolite profiles.
               
Click one of the above tabs to view related content.