LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strategy for Quantitative Analysis of Isomeric Bis(monoacylglycero)phosphate and Phosphatidylglycerol Species by Shotgun Lipidomics after One-Step Methylation.

Photo by dawson2406 from unsplash

Understanding the cellular function and metabolism of bis(monoacylglycero)phosphate (BMP), an important but low-abundance class of phospholipids, has been hindered due to its difficulties to be resolved from its structural isomer… Click to show full abstract

Understanding the cellular function and metabolism of bis(monoacylglycero)phosphate (BMP), an important but low-abundance class of phospholipids, has been hindered due to its difficulties to be resolved from its structural isomer (i.e., phosphatidylglycerol, PG, another low-abundance class of phospholipids). A novel strategy for quantitative analysis of BMP and PG species was developed after one-step methylation of lipid extracts in combination with high mass accuracy/resolution mass spectrometry after direct infusion (i.e., shotgun lipidomics). The novel strategy was applied for quantitative analysis of mouse hepatic BMP and PG species and their changes induced by long-term high-fat diet (HFD) feeding. Interestingly, we revealed that HFD-fed mice display a dramatic accumulation of hepatic BMP compared to chow-fed littermates. We believe the development of this novel strategy could greatly facilitate our understanding of the role of BMP in biological systems.

Keywords: strategy quantitative; quantitative analysis; monoacylglycero phosphate; strategy; bis monoacylglycero

Journal Title: Analytical chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.