Field, reliable, and ultrasensitive detection of dipicolinic acid (DPA), a general biomarker of bacterial spores and especially Bacillus anthracis, is highly desirable but still challenging in current biometric security emergency… Click to show full abstract
Field, reliable, and ultrasensitive detection of dipicolinic acid (DPA), a general biomarker of bacterial spores and especially Bacillus anthracis, is highly desirable but still challenging in current biometric security emergency response system. Herein we report an environmentally safe mercury(II) ions-mediated and competitive coordination interaction based approach for rationally designed surface-enhanced Raman scattering (SERS)-active gold nanoparticles (AuNPs), enabling rapid, ultrasensitive and zero-background detection of DPA without the pretreatment of samples. By means of competitiveness, these papain-capped gold nanoparticles (P-AuNPs) are induced to undergo controllable aggregation upon the addition of Hg2+ ions and DPA with a concentration range (1 nM∼8 μM), which correspondingly cause quantitative changes of SERS intensity of cresyl violet acetate (CVa) conjugated AuNPs. The decreased Raman intensity obtained by subtracting two cases of additives that contain only Hg2+ and the mixture of Hg2+ and DPA is proportional to the concentration of DPA over a range of 1 nM∼8 μM (R2 = 0.9824), with by far the lowest limit of detection (LOD) of 67.25 pM (0.01 ppb, S/N = 3:1). Of particular significance, mercury(II) ions actually play two roles in the process of measurements: a mediator for two designed competitive ligands (DPA and papain), and also a scavenger for the possibly blended ligands due to the different interaction time between DPA and the interferent with Hg2+ ions, which guarantees the interference-free detection of DPA even under real conditions.
               
Click one of the above tabs to view related content.