LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phasor-Fluorescence Lifetime Imaging Microscopy Analysis to Monitor Intercellular Drug Release from a pH-Sensitive Polymeric Nanocarrier.

Photo from wikipedia

The design of highly efficient drug carriers, and the development of appropriate techniques to monitor their mechanism of action and therapeutic effect, are both critical for improving chemotherapy. Herein, a… Click to show full abstract

The design of highly efficient drug carriers, and the development of appropriate techniques to monitor their mechanism of action and therapeutic effect, are both critical for improving chemotherapy. Herein, a polymeric nanoparticle, PAH-Cit/DOX (poly(allylamine)-citraconic anhydride/doxorubicin), was synthesized and used as a nanodrug system for the efficient delivery and pH-responsive release of doxorubicin (DOX) into cancer cells. The PAH-Cit/DOX nanoparticles were stable at physiological pH but effectively released DOX under weakly acidic conditions. The release efficiency was 90.6% after 60 h of dialysis in phosphate-buffered saline at pH 5.5. Confocal images showed the rapid movement of the drug from the cytoplasm to the nucleus, indicating the effective drug release MCF-7 cells. Notably, the combination of fluorescence lifetime imaging microscopy (FLIM) and phasor analysis (phasor-FLIM) provides an approach to monitor the dynamic change of DOX fluorescence lifetime in intercellular environments. Phasor-differentiated lifetime pixel intensity in FLIM images was quantified and used to evaluate the DOX release from nanocarriers, making it possible to detect the dynamics of intracellular release and transport of DOX.

Keywords: microscopy; drug; dox; phasor; fluorescence lifetime; release

Journal Title: Analytical chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.