LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Implementation of Fragment Ion Protection (FIP) during Ultraviolet Photodissociation (UVPD) Mass Spectrometry.

Photo by mlightbody from unsplash

Ultraviolet photodissociation (UVPD) is a nonselective activation method in which both precursor and fragment ions may absorb photons and dissociate. Photoactivation of fragment ions may result in secondary or multiple… Click to show full abstract

Ultraviolet photodissociation (UVPD) is a nonselective activation method in which both precursor and fragment ions may absorb photons and dissociate. Photoactivation of fragment ions may result in secondary or multiple generations of dissociation, which decreases the signal-to-noise ratio (S/N) of larger fragment ions owing to the prevalent subdivision of the ion current into many smaller, often less informative, fragment ions. Here we report the use of dipolar excitation waveforms to displace fragment ions out of the laser beam path, thus alleviating the extent of secondary dissociation during 193 nm UVPD. This fragment ion protection (FIP) strategy increases S/N of larger fragment ions and improves the sequence coverage obtained for proteins via retaining information deeper into the midsection of protein sequences.

Keywords: fragment ions; photodissociation uvpd; ultraviolet photodissociation; ion; ion protection; fragment ion

Journal Title: Analytical chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.