LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New Resonance Ionization Mass Spectrometry Scheme for Improved Uranium Analysis.

Photo from wikipedia

Resonance ionization mass spectrometry (RIMS) combines tunable laser spectroscopy with mass spectrometry to provide a high-efficiency means of analyzing solid materials. We previously showed a very high useful yield of… Click to show full abstract

Resonance ionization mass spectrometry (RIMS) combines tunable laser spectroscopy with mass spectrometry to provide a high-efficiency means of analyzing solid materials. We previously showed a very high useful yield of 24% for analysis of uranium using three lasers to excite and ionize atoms sputtered from metallic uranium and uranium dioxide. A new resonance ionization scheme using only two lasers achieves a higher useful yield of 38% by accessing both the ground electronic state and a low-lying electronic state of atomic uranium that is significantly populated by sputtering. The major loss channel in analyzing uranium dioxide is the formation of UOx molecules during sputtering. Prebombardment of the surface with 3 keV noble gas ions prior to analysis reduces the surface and results in a sputtered flux with a greatly enhanced proportion of atomic U. This method of surface reduction results in uranium useful yields as high as 6.6% for uranium dioxide analysis, compared to 2% from previous work.

Keywords: resonance ionization; analysis; mass spectrometry

Journal Title: Analytical chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.