LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Abnormal Ionic-Current Rectification Caused by Reversed Electroosmotic Flow under Viscosity Gradients across Thin Nanopores.

Photo by usgs from unsplash

Single nanopores have attracted much scientific interest because of their versatile applications. The majority of experiments have been performed with nanopores being in contact with the same electrolyte on both… Click to show full abstract

Single nanopores have attracted much scientific interest because of their versatile applications. The majority of experiments have been performed with nanopores being in contact with the same electrolyte on both sides of the membrane, although solution gradients across semipermeable membranes are omnipresent in natural systems. In this manuscript, we studied ionic and fluidic movement through thin nanopores under viscosity gradients both experimentally and using simulations. Ionic-current rectification was observed under these conditions because solutions with different conductivities filled across the pore under different biases caused by electroosmotic flow. We found that a pore filled with high-viscosity solutions exhibited a current increase with applied voltage in a steeper slope beyond a threshold voltage, which abnormally reduced the current-rectification ratio. Through simulations, we found that reversed electroosmotic flow, which filled the pore with aqueous solutions of lower viscosities, was responsible for this behavior. The reversed electroosmotic flow could be explained by slower depletion of co-ions than of counterions along the pore. By increasing the surface charge density of pore surfaces, current-rectification ratio could reach the value of the viscosity gradient across thin nanopores. Our findings shed light on fundamental aspects to be considered when performing experiments with viscosity gradients across nanopores and nanofluidic channels.

Keywords: current rectification; electroosmotic flow; viscosity; gradients across

Journal Title: Analytical chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.