LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective Liquid Chromatography-Trapped Ion Mobility Spectrometry-Mass Spectrometry Separation of Isomeric Lipid Species.

Photo from wikipedia

Lipids are a major class of molecules that play key roles in different biological processes. Understanding their biological roles and mechanisms remains analytically challenging due to their high isomeric content… Click to show full abstract

Lipids are a major class of molecules that play key roles in different biological processes. Understanding their biological roles and mechanisms remains analytically challenging due to their high isomeric content (e.g., varying acyl chain positions and/or double bond locations/geometries) in eukaryotic cells. In the present work, a combination of liquid chromatography (LC) followed by high resolution trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) was used to investigate common isomeric glycerophosphocholine (PC) and diacylglycerol (DG) lipid species from human plasma. The LC dimension was effective for the separation of isomeric lipid species presenting distinct double bond locations or geometries but was not able to differentiate lipid isomers with distinct acyl chain positions. High resolution TIMS-MS resulted in the identification of lipid isomers that differ in the double bond locations/geometries as well as in the position of the acyl chain with resolving power ( R) up to ∼410 ( R ∼ 320 needed on average). Extremely small structural differences exhibiting collision cross sections (CCS) of less than 1% (down to 0.2%) are sufficient for the discrimination of the isomeric lipid species using TIMS-MS. The same level of performance was maintained in the complex biological mixture for the biologically relevant PC 16:0/18:1 lipid isomers. These results suggest several advantages of using complementary LC-TIMS-MS separations for regular lipidomic analysis, with the main emphasis in the elucidation of isomer-specific lipid biological activities.

Keywords: spectrometry; isomeric lipid; ion mobility; trapped ion; liquid chromatography; lipid species

Journal Title: Analytical chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.