LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical Aptasensor for Ultralow Fouling Cancer Cell Quantification in Complex Biological Media Based on Designed Branched Peptides.

Photo from wikipedia

The rapid, convenient, and selective assaying of clinical targets directly in complex biological media brings with it the potential to revolutionize diagnostics. One major hurdle to impact is retention of… Click to show full abstract

The rapid, convenient, and selective assaying of clinical targets directly in complex biological media brings with it the potential to revolutionize diagnostics. One major hurdle to impact is retention of selectivity and a tight control of nonspecific surface interactions or biofouling. We report herein, the construction of an antifouling interface through the covalent attachment of designed branched zwitterionic peptides onto electrodeposited polyaniline film. The antifouling capability of the designed branched peptide significantly outperforms that of the commonly used PEG and linear peptides. The interfaces modified with branched peptides are exceptionally effective in reducing a nonspecific protein and cell adsorption, as verified by electrochemical and fluorescent characterization. The derived sensors with mucin1 protein (MUC1) aptamer as the recognition element detect MUC1-positive MCF-7 breast cancer cells in human serum with high sensitivity and selectivity. The linear response range of the cytosensor for the MCF-7 cell is from 50 to 106 cells/mL, with a limit of detection as low as 20 cells/mL. More importantly, the assaying performances remain unchanged in human serum owing to the presence of branched antifouling peptide, indicating feasibility of the cytosensor for practical cancer cell quantification in complex samples.

Keywords: branched peptides; complex biological; biological media; designed branched; cancer; cell

Journal Title: Analytical chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.